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Abstract

This article develops an efficient pricing algorithm for American lookback options on a bino-

mial lattice with stochastic volatility. This is achieved by combining the structure of this lattice

together with the fact that one can price lookbacks on a standard binomial lattice without hav-

ing to store the path variables. We apply this algorithm to study the efficiency of fractional

lookback contracts, which are used as a benchmark for designing equity indexed annuities, and

illustrate the impact of volatility persistence on their prices. This algorithm also extends the

usefulness of the stochastic volatility model proposed by Aingworth, Das and Motwani (2006)

by enabling the pricing of lookback options on their lattice.
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1 Introduction

Dynamic programming enables the exact pricing of american options in discrete models through

a simple backward recursion. This idea is extensively used to get approximate prices of American

options, even under continous time models. However pricing of american style exotic options has

always posed a challenge, both for discrete and continuous time models.
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Though backward recursion can be used in discrete time models to price such options, the

challenge comes from the fact that along with the stock price, one also needs to keep track of an

additional state variable (usually a path dependent variable capturing the past) at every node.

For example, for a floating strike lookback put option, this additional variable will be the running

maximum of the previous prices until that node, which is highly path dependent. Similarly for an

Asian option, we need to keep track of the running average of the past prices.

For more complex exotics, more than one additional state variable may be needed to get the

exact price through backward recursion. Keeping track of additional variables adds considerably to

the computational burden of the pricing algorithm and makes exact computations infeasible, even

for moderately large trees.

In this context, Hull and White (1993) suggested an exact algorithm for pricing American style

lookback options and an approximate algorithm for American style Asian options, using the Cox

Ross and Rubinstein (CRR) parametrization of the binomial model (Cox et al. (1979)). However

their algorithm had the drawback of tracking the state variables at every node, in addition to the

current stock price.

Cheuk and Vorst (1997) made use of homogeneity considerations and overcame this drawback

by giving a simpler algorithm for pricing lookback options, which did not require the tracking of

the additional path dependent variables. This was a significant step as it reduced the complexity

of pricing lookbacks on binomial trees, down to that of pricing plain vanilla options.

Meanwhile Aingworth et al. (2006) proposed a simpler stochastic volatility model (referred

to as the ADM model in the rest of the article) on the lattice, which considerably reduced the

computational complexity arising in fully stochastic volatility models like Heston (1993). Their

primary purpose of proposing a lattice model was to price American options. The main advantage

of this model is it can accommodate multiple volatility regimes and with varying persistence levels

for each regime. This model easily generates the volatility smiles and the volatility skews that are

observed with market data and also has the advantage that it can be quickly calibrated to the

observed option prices.

The ADM model amounts to tracking the joint process of the stock price and the volatility on

a binomial lattice. In the simplest case of two possible levels of volatility, the binomial tree will

have four branches emanating from each node, one for each combination of stock price going up

or down and the volatility remaining at the current level or switching to the other level. For this

model the authors developed an algorithm for pricing vanilla European and American options and
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proved that its run time is only of polynomial order, unlike other closely related stochastic volatility

lattice models where the run time is exponential. They achieved this by discovering a recombining

structure of the lattice, which is not present in some of the related stochastic volatility models.

However pricing Exotic options on a stochastic volatility lattice is going to be a much more

complex computational task due to the storage of additional path dependent variables. Traversing

all possible paths for a n period tree that takes into account stochastic volatility, represents a

prohibitive computational challenge, even for small values of n.

Many authors since Naik (1993) have focused on pricing vanilla options in models, where the

parameters governing the underlying asset process follow a regime-switching framework, similar

to the ADM model. The reader can find a recent summary of these developments in Costabile

et al. (2014). For this study, which explores the pricing of exotic options under such models, we

have chosen the ADM model for its simplicity. Here we show how to overcome the computational

challenge in the specific case of pricing lookback options.

The initial motivation for this article was to check whether the computations for pricing exotic

options can be brought down to polynomial time complexity. In the particular case of pricing

lookbacks, instead of keeping track of the additional state variable, such as the running maximum

or the minimum, we were interested in extending the Cheuk and Vorst approach that exploits the

homogeneity considerations. Such an extension would have two major advantages. First it would

have the same polynomial time complexity as that of the algorithm for pricing vanilla American

options. Second, it could eliminate the storage of additional path dependent variables, thereby

significantly reducing the computational burden as compared to standard Hull and White-type

algorithms. This is the objective of the current study.

Finally, the simplicity of lookback options is one of the main reasons for its popularity among

exotic options (see for example Heynen and Kat (1997) and Gerber and Shiu (2003)). In the words

of Conze and Viswanathan (1991),

. . . among these, lookback options are very attractive options because they keep track

of past events. As a consequence, they allow its holder to take advantage of antici-

pated market movements without knowing the exact date of their occurrences, and may

provide psychological comfort by minimizing regrets.

While several studies have discussed the pricing of American lookbacks in the Black-Scholes

framework (see for example Kimura (2011), Lai and Lim (2004) and references therein), our paper
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focuses on a stochastic volatility model and adds to the available pricing algorithms for American

lookbacks in this setup.

As an application of the pricing algorithm developed here, prices of the closely related fractional

lookback options, also known as partial lookbacks, are also reported. The fractional lookback is a

cheaper variant of the lookback, with payoffs given by,(
S(T )− α min

0≤i≤N
S(ti)

)
+

and
(
β max

0≤i≤N
S(ti)− S(T )

)
+

where typically α > 1 and β < 1, while S(t) denotes the underlying asset price at time t (the

notations are described in more detail in the following section). Such lookback options serve as an

useful benchmark while pricing Equity Indexed Annuities that offer investors participation in the

equity markets with a principal protection feature (Tiong (2000)).

The rest of the paper is organized as follows. The next section describes the stochastic volatility

lattice and the algorithm for pricing floating strike lookback calls. Section 3 discusses the extensions

related to observation frequency and early exercise. Numerical results are reported in section 4 and

section 5 concludes.

2 Stochastic Volatility lattice

We give here a quick overview of the ADM model and use the same notation to describe our

algorithm. For illustration the case of pricing currency options is considered. The same treatment

with slight modifications can be applied for options on other assets.

In the standard CRR parametrization of the Binomial model, exchange rates evolve as follows

at time points t0, t1, . . . , tN : S(0) = S0 and for i ≥ 0, S(ti+1) is either S(ti)u or S(ti)d, where u and

d are the returns for the up and down moves respectively. The time points are typically equispaced,

i.e. ti = iT
N , where T is the length of the time horizon and N is the number of periods in the lattice.

The up and down returns are given by u = exp (σ
√
T/N) and d = 1/u, where σ is the exchange

rate volatility that is assumed to be constant for the entire time horizon.

The ADM model, which is a stochastic volatility version of this basic model, assumes that σ

can take multiple values namely σj , j = 1, . . . , k and changes in the volatility are governed by a

Markov chain. Here at every time point, there is a joint evolution of both the exchange rate and

the volatility in the following sense: the exchange rate process goes up or down (the magnitude of

which depends on the current level of volatility) and the volatility process can remain at the same
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level or switch to a different level. The model specification could also include a correlation between

the volatility process and the exchange rates.

The main challenge with this lattice is its recombining nature. As mentioned earlier, even with

two volatility states, each node in the tree will give rise to four other nodes for the next time period,

one for each combination of exchange rate going up/down and volatility staying the same/switches

to the other state. The recombining is not very clear, as an up move to the low volatility state

followed by a down move to the high volatility state will result in a different price if the sequence is

reversed. Unless this is resolved, we will have the difficulty that at time period N , we will have to

deal with 4N nodes and the computing efforts will be prohibitive even for pricing a vannila option

at moderate values of N . Aingworth et al. (2006) resolved this issue by identifying a recombining

structure within this lattice, which we use in our algorithm.

We restrict our attention to the case of two volatility levels (a “normal” and a “high” volatility

regime), to keep the exposition simple. The transition matrix for the markov chain governing the

volatility switches is denoted as:

P =

 pL 1− pL

1− pH pH

 .
With this notation, pL and pH also reflects the degree of persistence in the low and high volatility

states. Corresponding to the two volatility levels, which from here on will be denoted as σL and

σH , we have uL, dL, uH and dH defined in the usual manner, as in the beginning of this section.

When σ(ti) = σL, the risk-neutral joint evolution of (S(t), σ(t)) is given by,

(
S(ti+1), σ(ti+1)

)
=



(
S(ti)uL, σL

)
w/prob qL pL(

S(ti)dL, σL
)

w/prob (1− qL) pL(
S(ti)uL, σH

)
w/prob qL (1− pL)(

S(ti)dL, σH
)

w/prob (1− qL) (1− pL)

,

where

qL =
e(rd−rf )T/N − dL

uL − dL
,

rd is the continuous-time risk-free domestic rate and rf is the corresponding risk-free foreign rate.

Analogously when σ(ti) = σH , we replace uL, dL and qL with uH , dH and qH respectively and adjust
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the transition probabilities as below:

(
S(ti+1), σ(ti+1)

)
=



(
S(ti)uH , σH

)
w/prob qH pH(

S(ti)dH , σH
)

w/prob (1− qH) pH(
S(ti)uH , σL

)
w/prob qH (1− pH)(

S(ti)dH , σL
)

w/prob (1− qH) (1− pH)

,

We first consider the pricing of an European floating strike lookback call option, whose payoff

at maturity is given by,

S(T )− min
0≤i≤N

S(ti).

For such an option, the option value at any intermediate time tj , will depend not only on the

exchange rate at that time point, S(tj), but also the running minimum,

m(tj) = min
0≤i≤j

S(ti).

In order to value this option at inception, the usual method of going backwards on the lattice is

followed. But we will do this in a manner similar to the Cheuk and Vorst algorithm, so as to avoid

keeping track of the running minimum directly at every node.

At time tj , let k1 be the integer that captures the difference in powers of uL between S(tj) and

m(tj) and similarly define k2 for the difference in powers of uH . Thus,

S(tj) = m(tj)u
k1
L uk2H .

We now prove the following claim, which will simplify our option pricing algorithm and in turn

significantly reduce the computational efforts.

Claim: If C(S(tj),m(tj), tj , σ(tj)) denotes the intermediate value of the option at time tj , then it

can be written as,

C
(
S(tj),m(tj), tj , σ(tj)

)
= S(tj)V (k1, k2, tj , σ(tj)),

for some function V depending only on k1, k2, tj and σ(tj).

We now prove the claim through backward induction. At maturity,

C
(
S(tN ),m(tN ), tN , σ(tN )

)
= S(tN ) (1− u−k1

L u−k2
H ),

for both the values of σ(tN ). So the claim holds at maturity if we define,

V (k1, k2, tN , σ(tN )) = 1− u−k1
L u−k2

H .
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Now to prove the claim for other time periods, consider the following three cases, starting with the

simpler ones. We will assume the claim to be true for time tj+1 and use this to prove it for tj .

Case A: k1 ≥ 1 and k2 ≥ 1.

Without loss of generality, let σ(tj) = σL. If the underlying exchange rate goes from S(tj) to

S(tj)uL, then the difference in powers in uL, (i.e. k1) increases by 1 and in a down move k1

decreases by 1. In all this k2 remains unaffected. The value of the lookback at tj using risk-neutral

pricing is given by,

C
(
S(tj), m(tj), tj , σ(tj) = σL

)
=

1

r

{
qL pLC

(
S(tj)uL, m(tj+1), tj+1, σL

)
+ (1− qL) pLC

(
S(tj)dL, m(tj+1), tj+1, σL

)
+ qL (1− pL)C

(
S(tj)uL, m(tj+1), tj+1, σH

)
+ (1− qL) (1− pL)C

(
S(tj)dL, m(tj+1), tj+1, σH

)}
,

where r = erdT/N . Combining the observation on k1 and the backward induction hypothesis, the

right hand side can be written as,

1

r

{
qL pL S(tj)uL V (k1 + 1, k2, tj+1, σL) + (1− qL) pL S(tj)dL V (k1 − 1, k2, tj+1, σL)

+ qL (1− pL)S(tj)uL V (k1 + 1, k2, tj+1, σH) + (1− qL) (1− pL)S(tj)dL V (k1 − 1, k2, tj+1, σH)
}
.

Taking S(tj) outside the braces in the above expression and defining whatever is remaining as

V (k1, k2, tj , σL), completes the proof of the claim for this case.

Similarly for σ(tj) = σH , the above expression will change to,

1

r

{
qH pH S(tj)uH V (k1, k2 + 1, tj+1, σH) + (1− qH) pH S(tj)dH V (k1, k2 − 1, tj+1, σH)

+ qH (1− pH)S(tj)uH V (k1, k2 + 1, tj+1, σL) + (1− qH) (1− pH)S(tj)dH V (k1, k2 − 1, tj+1, σL)
}
.

Now defining the V function in a similar manner as above completes the proof.

Case B: k1 = k2 = 0.

In this case, the exchange rate right now is equal to the minimum reached so far and hence the

difference in powers is zero. Again without loss of generality, let σ(tj) = σL. Now if the underlying

exchange rate goes from S(tj) to S(tj)uL, then k1 increases to 1, while k2 remains at 0. But if

there is a downward move, then a new minimum is reached and both k1 and k2 remains at zero.

So, the definition of the V function for this case will be

1

r

{
qL pL uL V (1, 0, tj+1, σL) + (1− qL) pL dL V (0, 0, tj+1, σL)

+ qL (1− pL)uL V (1, 0, tj+1, σH) + (1− qL) (1− pL) dL V (0, 0, tj+1, σH)
}
.
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And for σ(tj) = σH , this definition changes to,

1

r

{
qH pH uH V (0, 1, tj+1, σH) + (1− qH) pH dH V (0, 0, tj+1, σH)

+ qH (1− pH)uH V (0, 1, tj+1, σL) + (1− qH) (1− pH) dH V (0, 0, tj+1, σL)
}
.

This completes the proof for Case B.

Case C: One of k1, k2 is ≤ 0 and the other is ≥ 1.

This case does not follow a natural generalization as the previous two cases, as shown in the

illustration below. Before we proceed note that both k1 and k2 cannot both be less than zero, as

we are computing the differences in the powers with the minimum exchange rate seen so far.

Suppose for example, k1 = 0, k2 = 3 and σ(tj) = σL currently. Let S(tj) = S0 u
−2
L u2H . This

implies,

m(tj) = S0 u
−2
L u−1

H

(
= S0 d

2
L dH

)
.

Now from tj to tj+1, if the currency moves downward, then

S(tj+1) = S0 u
−3
L u2H .

The given information is insufficient to determine whether the currency has reached a new minimum

or not, as this will depend on the relation between uL and uH . In order to achieve this we use the

following rule :

Define ξ =
log uL
log uH

. A new minimum is reached if (k1 − 1)ξ + k2 ≤ 0.

Continuing our example, suppose we know that uH = u2L. This implies ξ = 1/2. So if S(tj) =

S0 u
−2
L u2H , then after five successive down moves, all in the low volatility regime,

S(tj+5) = S0 u
−7
L u2H

(
same as S0 u

−1
L u−1

H

)
.

This is still higher than the minimum. Now with one more down move in the low volatility regime,

we reach the minimum, i.e. with k1 = −5 and k2 = 3, we will have (k1 − 1)ξ + k2 = 0.

The above example illustrates the following updating rule for the up and down moves when

σ(tj) = σL: if the underlying exchange rate goes from S(tj) to S(tj)uL, then k1 increases by

1 and k2 remains the same. Whereas if it is a down move, then k1 decreases by 1 only when

(k1 − 1)ξ + k2 > 0; otherwise, both k1 and k2 are set to 0, indicating that a new minimum is

reached.

Similarly, if k2 ≤ 0 and σ(tj) = σH at any node, we follow the updating rule as given below:

with a up move, k2 increases by 1 and k1 remains the same. For a down move, k2 decreases by 1
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only when k1ξ+(k2−1) > 0; otherwise, both k1 and k2 are set to 0, indicating that a new minimum

is reached.

In Figure 1, we give a sample path in the lattice that illustrates the updating rule, where k2

happens to take negative values. Here we have assumed that uH = u1.5L , implying ξ = 2/3. For

simplicity, we have suppressed the time variable and shown only the changes in the values of (k1, k2)

and whether the node is in the low or high volatility state (denoted as L or H).

(0,0,L)�
�
�

(1,0,L)�
�
�

(2,0,H)
Q
Q
Q (2,-1,H)

Q
Q
Q (0,0,L/H)

Figure 1: A sample branch illustrating the updating rule

Finally similar to cases A and B, redefining the V function based on the above updating rules

completes the proof of our claim for this case. Further, the initial price of the European floating

strike lookback Call option is obtained as,

C
(
S0,m(t0), t0, σ(t0)

)
= S0 V (0, 0, t0, σ(tj)).

3 Extensions

One of the important things to take care while pricing a discrete exotic option on a lattice is

the number of fixings of the contract. For example, if the lookback option in our case uses only

weekly fixings to compute the minimum, then for pricing a six-month option on a lattice with 260

time periods , only the price at every tenth time period should be used for updating the running

minimum. Instead if the minimum is updated at each of the 260 time periods, then the price thus

obtained will not correspond to the contract with weekly fixings.

This issue of observation frequency is addressed next, using the standard modification available

for the Cheuk-Vorst type algorithms. Among the time points denoted in the lattice, let t`, ` =

0, Z, 2Z, . . . , LZ = N be the observation points. Thus between any two observation periods, there

are Z − 1 time points. The example in the previous paragraph corresponds to L = 26 and Z = 10.

The only modification that is needed in our algorithm is a change in the updating rule when

tj 6= iZ − 1 (i = 1, 2, . . . , L). For tj 6= iZ − 1, we will have,
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(k1, k2, tj , σL) �
�
�

Q
Q
Q

(k1 + 1, k2, tj , σL/σH)

(k1 − 1, k2, tj , σL/σH)

and

(k1, k2, tj , σH) �
�
�

Q
Q
Q

(k1, k2 + 1, tj , σL/σH)

(k1, k2 − 1, tj , σL/σH)

In other words, for downward moves at these nodes we do not check whether a new minimum

is reached, as these are non-obervation points. And for all nodes at tj = iZ − 1, we retain the

usual updating rule as before. Defining the V function as per these updating rules will correctly

price the lookback contracts with the given observation frequency. The final simplified algorithm

incorporating all the three cases and the observation frequency, is given below.

Algorithm for pricing a Lookback Call option

____________________________________________________________________

Read N, T, L, Z, rf, rd, S0, sig_L, sig_H, p_L, p_H

Assign the value for xi based on u_L and u_H

Define V at time N

for j = N-1 to 0

if j != iZ-1 (i=1,..., L)

Use the values at (k1+1,k2) and (k1-1,k2) to update V for sig_L

Use the values at (k1,k2+1) and (k1,k2-1) to update V for sig_H

else

Use the values at (k1+1,k2), subject to (k1+1)*xi + k2 > 0, and at (k1-1,k2),

subject to (k1-1)*xi + k2 > 0, to update V for sig_L.

If any of these condition is not met, use the values at (0,0) instead.

Use the values at (k1,k2+1), subject to k1*xi + (k2+1) > 0, and at (k1,k2-1),

subject to k1*xi + (k2-1) > 0, to update V for sig_H.

If any of these condition is not met, use the values at (0,0) instead.

endfor
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Output prices as S0*V (at time 0) for sig_L and sig_H respectively.

____________________________________________________________________

The same algorithm will be used for pricing an American lookback option, by performing an

additional check for early exercise at each node. This is because, the intrinsic value of the lookback

call option at any node is given by,

S(tj)−m(tj) = S(tj)
(
1− u−k1

L u−k2
H

)
.

Thus for pricing an American option, we check if 1 − u−k1
L u−k2

H > V (k1, k2, tj , σ(tj)) and if this

is true, the value of V is replaced with this expression. This modification gives us the price of

American lookback options.

Following the original Cheuk and Vorst algorithm, the above pricing code can be easily modified

for pricing European and American lookback puts, which will involve the running maximum of the

exchange rate, and also for European fixed strike lookback Call and Put options. However because

of homogeneity considerations, this cannot be extended for American fixed strike lookbacks.

4 Numerical Results

Some sample option prices computed for different values of the inputs, using the proposed algorithm,

are provided in this section. Our goal is to verify whether these prices follow some of the common

phenomenon observed in the case of vanilla options by the earlier studies. We also tested our code

by checking that we get the prices of lookback from a standard CRR Binomial tree (i.e. with the

constant volatility assumption) in the special case when σL = σH , independent of the values for pL

and pH .

Table 1 gives the prices of both European and American floating strike lookback calls, with an

expiry of six months, where the exchange rate moves between two volatility levels, σL = 15% and

σH = 40%. The persistence levels used here are pL = pH = 0.75, i.e. there is a 25% chance of

transition to the other volatility level from the current state. These numbers also give us the impact

of the initial volatility level at the inception of the option contract. Annual domestic risk-free rate

of 3% and a foreign rate of 7% were assumed.

Table 1: European and American option prices from the algorithm, for a floating strike lookback

call with increasing time periods (N) in the lattice and with S0 = 100, T = 0.5, rf = 0.07 and
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rd = 0.03. Prices with initial volatility states at the high (H) and the low (L) levels are given in

separate columns.

N European (L) European (H) American (L) American (H)

25 12.45 13.14 12.75 13.49

50 13.14 13.48 13.45 13.81

100 13.59 13.76 13.91 14.02

200 13.90 13.98 14.23 14.31

These numbers do not take into account the observation frequency, and for each of the com-

puted price, the code checks for a new maximum at every time period. As observed by previous

authors, this leads to slow convergence and also the prices will form an increasing sequence, as

more observation points will only lead to higher prices. And the increasing sequence of prices will

eventually converge to the price of a continuous lookback option.

The above issue is sorted out once we take in to account the observation frequency, as discussed

in section 3. Table 2 shows prices for the European lookback option starting at the low volatility

level with different values of L and Z. For example T =6 months, Z = 25 and L = 26 corresponds

to a lookback option with weekly fixings, with 24 time periods in between any two fixings. The

values for Z = 1 are similar to the values in Table 1 under the column European(L).

Table 2: Taking into account observation frequency with the same input values as before.

Z

L 1 10 25 50 50 (σavg=0.22)

1 4.19 6.60 7.08 7.22 5.09

2 (quarterly) 5.99 8.44 8.73 8.81 6.25

6 (monthly) 9.60 10.74 10.87 10.90 7.79

26 (weekly) 12.49 12.64 12.69 12.70 9.14

We observe the following:

(i) We find that the convergence is a little faster once we keep the number of fixings constant

(across rows). Also the speed of convergence improves for higher values of L, since the bottom

rows have more overall time periods in the lattice when compared to the top ones.
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(ii) For table 2, the exchange rate starts at a volatility level of 15% and has a 25% chance of

moving to a higher volatility level of 40%. Suppose we had ignored this volatility transition

and had priced this option using the constant volatility assumption, the prices we would have

obtained is shown in the last column of this table. Here we took an approximate average

volatility of 22%(=0.75x15 + 0.25x40) for the entire time period. We find that the options

can be significantly underpriced while assuming this constant volatility.

We give two other examples of the possible investigations offered by a stochastic volatility

model, with an efficient pricing algorithm in hand. First in table 3, we illustrate the effects of

persistence levels on the option prices, using a 100 period lattice. Here we look at a one year option

contract and we start with the case where the fixings are half-yearly. We considered a low volatility

level of 5% and a high volatility level of 30%. The first and the last rows are extreme situations

corresponding to very high persistence and very low persistence. For American options given here,

we check for early exercise only at observation points. The code can be easily modified in case we

want to allow early exercise between the fixings.

Table 3: European and American lookback call option prices for varying persistence levels with

S0 = 100, T = 1, rf = 0.07, rd = 0.03, σL = 0.05 and σH = 0.3.

(a) Z=50 , L=2 (half-yearly)

(pL, pH) European (L) European (H) American (L) American (H)

(0.99,0.99) 4.62 9.05 4.70 9.39

(0.95, 0.95) 7.12 8.03 7.30 8.30

(0.8, 0.8) 7.73 7.94 7.96 8.19

(0.01, 0.01) 7.89 7.92 8.13 8.17

(b) Z=25 , L=4 (quarterly)

(0.99,0.99) 5.46 10.43 5.63 10.97

(0.95, 0.95) 8.25 9.23 8.57 9.67

(0.8, 0.8) 9.02 9.24 9.42 9.67

(0.01, 0.01) 9.23 9.26 9.65 9.69

As the numbers show, when we start in the low volatility state both American and European

option prices increase as we move from higher to lower persistence levels. This occurs because at a
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low persistence level, it is more easier for the exchange rate to migrate to the higher volatility state.

Instead when we start with the high volatility state, this pattern reverses and the prices decrease as

expected. Also note that even for a small change in the persistence levels from 99% to 95%, there

is a significant change in the option prices. We repeat this exercise by increasing the observation

frequency to quarterly on the 100 period lattice. We note that the differences created by the initial

volatility levels remain almost the same, if we increase the observation frequency, both at high and

low rates of transition.

Second, we give here the prices of fractional lookbacks, the payoffs of which were given in

section 1. For these contracts the value function at expiry needs to be slightly modified, since when

α is bigger than 1 for the Call option, it is sometimes possible for the final exchange rate to end

up below αm(tN ). So we define

V (k1, k2, tN , σ(tN )) = max(1− u−k1
L u−k2

H , 0).

The fractional lookback option prices with one year expiry are presented in table 4, using

Z = 5, L = 26, i.e. a 130 time period lattice where the observation frequency is once every two

weeks. We have kept the low volatility level at 20% and the high volatility at 40%. All the prices

reported here are starting at the low volatility state. Along with the American option prices, we

also give for an easy reference, the percentage increase in the European option price, a buyer would

need to bear to get the early exercise rights.

Table 4: Prices of fractional lookback call options with T = 1, S0 = 100, rd = 0.03, rf = 0.07,

Z = 5, L = 26 , σL = 0.2, σH = 0.4.

(pL, pH) = (0.9, 0.2) (pL, pH) = (0.4, 0.2)

α European(L) American(L) European(L) American(L)

1.0 12.54 13.21 (5.3%) 16.64 17.35 (4.3%)

1.1 6.92 7.25 (4.8%) 10.94 11.37 (3.9%)

1.2 3.63 3.77 (3.9%) 7.03 7.26 (3.3%)

1.3 1.83 1.89 (3.3%) 4.44 4.57 (2.9%)

Table 4 also considers two cases of low and high volatility. The first case, where persistence

levels in the low and high states are 90% and 20% respectively, corresponds to a situation where

the exchange rate is mosty at the low volatility state but occassionally experiences bursts of high

14



volatile periods and after which it quickly returns back to the calmer state. We look at the same

setting in the second case except that the short bursts of high volatility are more frequent (a higher

chance of 60% of migrating to the high volatility state).

The above numbers also tell us that, with α = 1.1 (i.e. 10% relaxation in mt), there is an almost

50% reduction in the option premiums and similar reductions in the premiums for subsequent values

of α. Thus as a cheaper alternative to the full lookback, the fractional option contract is effective

in reducing the premiums, while still maintaining the basic character of the lookback contract.

5 Summary

Allowing for stochastic volatility results in realistic pricing of option contracts, but with consider-

able computational efforts. In this paper we have reduced the computational burden significantly

for lookback options, by fully utilizing the structure of the model together with the homogenous

property of the contracts. In fact our procedure has allowed us to price a lookback option on the

stochastic volatility lattice, with almost the same computational complexity involved for pricing a

vanilla Call option. As an application of our algorithm, we have looked at the efficiency of a frac-

tional lookback contract in bringing down the premiums under stochastic volatility. In addition,

with this model we are able to observe the impact of volatility persistence on these prices.
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